W Mass Measurement from CDF

Electroweak Precision Constraints

Derive W mass from precisely measured electroweak quantities

$$m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2}G_F \sin^2 \theta_W (1 - \Delta r)} \quad \sin \theta_W^2 = 1 - \frac{m_W^2}{m_Z^2}$$

 Radiative corrections Δr dominated by top quark and Higgs loop ⇒allows constraint on Higgs mass

 Progress on W mass uncertainty now has the biggest impact on Higgs mass constraint

Motivation from the Past

From precision measurements from LEP and SLC on the Z boson pole

- top quark loops in Z⁰

Precision measurements on Z pole constraint top quark mass before its discovery

W Boson Mass Introduction

Combine information into transverse mass:

$$m_T = \sqrt{2p_T^{\ l}p_T^{\ v}(1-\cos\phi_{lv})}$$

Use $Z\rightarrow \mu\mu$ and $Z\rightarrow$ ee events to derive recoil model

Quadrant of CDF Detector

CDF Detector

Momentum Scale Calibration

- "Back bone" of CDF analysis is track p_T measurement in drift chamber (COT)
- Perform alignment using cosmic ray data: ~50µm→~5µm residual
- Calibrate momentum scale using samples of dimuon resonances (J/ψ, Y, Z)

Energy Scale Calibration

Transfer momentum calibration to calorimeter using E/p distribution of electrons from W decay by fitting peak of E/p

Tune number of radiation lengths with E/p radiative tail

Correct for calibration E_T dependence

Tune resolution on E/p and Z mass peak

Excellent description of E/p tail Constraints overall material

Z Boson Masses

- Perform blinded measurement of Z mass using derived scales from independent samples
- Comparison to LEP value of M_Z = 91188 ± 2 MeV is a powerful cross-check of the calibration
- After unblinding, M₇ added as further calibration to both p- and E-scales

Include $Z \rightarrow II$ masses for final momentum scale $\Delta M_W = 7$ MeV end energy scale $\Delta M_W = 10$ MeV

Hadronic Recoil

Recoil definition:

- → Energy vector sum over all calorimeter towers, excluding:
 - lepton towers

- Measured recoil:
 - hard recoil from hadronic activity in W/Z event
 - underlying event/spectator interaction energy
- Tune using Z and minimum-bias data
- Validate using measured recoil in W events

Recoil Model

- Project vector sum of p_T(II) and u on orthogonal axes defined by lepton directions
- Use Z balancing to calibrate recoil energy scale
- Mean and RMS of projections as a function of p_T(II) provide information for model parameters

Hadronic model parameters tuned by minimizing χ^2 between data and simulation

$$\Delta M_W = 9 \text{ MeV}$$

Parton Distribution Functions

Limited lepton acceptance produces dependence on PDFs

Evaluated with CTEQ and MSTW eigenvectors ΔM_W= 10 MeV

Expect improvement from charge asymmetry measurements

∆ MW (MeV/c²)

Eigenvector

Signal Simulation

 Generator-level input for W&Z simulation provided by RESBOS [Balazs et.al. PRD56, 5558 (1997)]

Custom fast simulation makes smooth, high statistics templates

Extract the W mass from fit to:

m_T, p_T and E_T^{miss}

distributions in muon and electron decay channel

Blind Analysis

All W and Z mass fit results were blinded with a random [-75,75] MeV offset hidden in the likelihood fitter

Blinding offset removed after the analysis was declared frozen

Technique allows to study all aspects of data while keeping Z mass and W mass result unknown within 75 MeV

Fit Results

Systematic Uncertainties

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

Systematic uncertainties shown in green: statistics-limited by control data samples

Uncertainty Scaling

Results: W Mass Combination

Previous world average: 80398 ± 23 MeV

New CDF result is significantly more precise than previous world average

$$M_W = 80387 \pm 12_{stat} \pm 15_{syst} \text{ MeV} = 80387 \pm 19 \text{ MeV}$$

Results: Higgs Constraints

End 2011:

Without
$$M_{W}$$
: $M_{H} = 106^{+71}_{-32} \text{ GeV}$

19

Conclusion

New CDF result is significantly more precise than previous world average

$$M_W = 80387 \pm 19 \text{ MeV}$$

The W boson mass will continue to play An important role as a stress test of the Standard Model.

20

Direct and Indirect M_W

21

Recoil Checks

Oliver Stelzer-Chilton TRIUMF

23